當前位置︰首頁 > 新聞資訊 > 正文

21個必知的機器學習開源工具,涵蓋5大領域2019-08-26 13:30:16 | 編輯︰hely | 查看︰ | 評論︰0

本文將介紹21個你可能沒使用過的機器學習開源工具。每個開源工具都為數據科學家處理數據庫提供了不同角度。

本文將介紹21個你可能沒使用過的機器學習開源工具。

每個開源工具都為數據科學家處理數據庫提供了不同角度。

本文將重點介紹五種機器學習的工具——面向非程序員的工具(Ludwig、Orange、KNIME)、模型部署(CoreML、Tensorflow.js)、大數據(Hadoop、Spark)、計算機視覺(SimpleCV)、NLP(StanfordNLP)、音頻和強化學習(OpenAI Gym)。

 

 

你肯定已經知道一些知名的開源工具,如R、Python、Jupyter筆記本等。但除此之外,還有一個世界——一個在雷達下機器學習工具存在的世界。它們雖沒有那些知名的開源工具出色,但卻可以幫助用戶解決許多機器學習的任務。

開源機器學習工具可分為以下5類︰

1. 面向非程序員的開源機器學習工具

對于沒有編程背景和技術背景的人來說,機器學習似乎很復雜。這是一個廣闊的領域,可以想象,初次接觸機器學習有多令人害怕。一個沒有編程經驗的人能在機器學習領域獲得成功嗎?

事實證明,能獲得成功!以下三種工具可以幫助非程序員跨越技術鴻溝,進入聲名鵲起的機器學習世界︰

· Uber Ludwig︰Uber’s Ludwig是一個建立在TensorFlow上的工具箱。Ludwig允許用戶訓練和測試深度學習模型,而不需要編寫代碼。用戶需要提供的只是一個包含數據的CSV文件,一個用作輸入的列表,以及一個用作輸出的列表——而剩下工作將由Ludwig來完成。它對實驗非常有用,因為用戶只需耗費很少的時間和精力,就能構建復雜的模型。並且用戶可以對其進行調整和處理之後再決定是否要將其運用在代碼中。

· KNIME︰KNIME可供用戶使用拖放界面創建整個數據科學工作流。用戶可以基本實現從功能工程到功能選擇的所有功能,甚至可以通過這種方式將預測機器學習模型納入工作流程中。這種可視化執行整個模型工作流的方法非常直觀,並且在處理復雜的問題時非常有用。

 

 

· Orange︰用戶不必知道如何編寫代碼以使用orange來挖掘數據、處理數字以及由此得出自己的見解。相反,用戶可執行基本可視化、數據操作、轉換和數據挖掘等任務。由于Orange的易用性及其添加多個附加組件以補充其功能的能力,該工具最近在學生和教師中十分流行。

還有許多更有趣、免費的開源軟件可以提供很好的機器學習功能,而無需編寫(大量)代碼。

此外,一些付費服務也可以考慮,如Google AutoML、 Azure Studio、 Deep Cognition和 Data Robot.

2. 旨在部署模型的開源機器學習工具

部署機器學習模型是一個十分重要但最容易被忽視的任務,用戶應該加以注意。它肯定會出現在面試中,所以用戶需很好地了解這個話題。

以下四種工具可以使用戶更易將其項目運用到現實設備上。

· MLFlow: MLFlow旨在與機器學習庫或算法配合使用,並管理包括實驗、再驗和機器學習模型部署在內的整個生命周期。目前,MLFlow在Alpha中有3個部分——跟蹤、項目和模型。

 

 

· Apple’s CoreML: CoreMLl是一個十分受歡迎的工具,它可將機器學習模型內置到用戶的iOS/Apple Watch/Apple TV/MacOS的應用程序中。CoreML的閃光點在于用戶無需對神經網絡或機器學習有廣泛的了解,最終達到雙贏的結果!

 

 

· TensorFlow Lite: TensorFlow Lite是一套幫助開發人員在移動設備(Android和iOS)和物聯網設備上運行TensorFlow模型的工具,旨在方便開發人員在網絡“邊緣”的設備上進行機器學習,而不是從服務器來回發送數據。

· TensorFlow.js ︰TensorFlow.js是用戶在網上部署機器學習模型的首選。這是一個開放源碼庫,供用戶在瀏覽器中構建和處理機器學習模型。它可為GPU加速,還自動支持WebGL。用戶可以導入現有的預培訓模型,也可以在瀏覽器上重新處理整個現有機器學習模型!

 

 

3. 大數據開源機器學習工具

大數據是一個研究如何進行分析、如何系統地從數據集中提取信息或以其他方式處理傳統數據處理軟件無法處理的太大或太復雜的數據集的領域。想象一下,每天處理數百萬條推特進行情緒分析。這感覺像是一項艱巨的任務,不是嗎?

放寬心!以下三種工具可以幫助用戶處理大數據。

· Hadoop: Hadoop是處理大數據最杰出也是最相關的工具之一。Hadoop允許用戶使用簡單的編程模型在計算機集群之間對大型數據集進行分布式處理。它旨在對單個服務器到數千台機器,每台機器都提供本地計算和存儲。

 

 

· Spark: Apache spark被認為在大數據應用程序方面是Hadoop的進階版。Apache spark的關鍵在于填補了Apache Hadoop在數據處理方面的空白。有趣的是,Spark可以同時處理批量數據和實時數據。

· Neo4j: 在處理大數據相關問題方面,Hadoop可能不是絕佳的選擇。例如,用戶需要處理大量的網絡數據或圖形相關問題(如社交網絡或人口統計模式等)時。而圖形數據庫(Neo4j)則是最佳選擇。

 

 

4. 用于計算機視覺、自然語言處理和音頻的開源機器學習工具

· SimpleCV: 參與任何計算機視覺項目都必須使用OpenCV。但你有沒有考慮過SimpleCV?SimpleCV可供用戶訪問幾個高性能的計算機視覺庫,如OpenCV——而不必首先了解位深度、文件格式、顏色空間、緩沖區管理、特征值以及矩陣與位圖存儲。計算機視覺讓項目變得更容易上手。

 

 

· Tesseract OCR: 你是否曾使用過一些有創意的應用程序,可以使用智能手機的攝像頭掃描文件或購物賬單,或者只需拍張支票就可以將錢存入銀行賬戶?所有這些應用程序使用的都是OCR,即光學字符識別軟件。Tesseract就是這樣的OCR引擎,可以識別100多種語言,也可以加以訓練識別其他語言。

· Detectron: Detectron是Facebook旗下人工智能研究公司的軟件系統,它采用了包括Mask R-CNN在內最先進的目標檢測算法。Detectron由Python語言編寫完成,由Caffe2深度學習框架提供支持。

 

 

· StanfordNLP: StanfordNLP是Python的自然語言分析包。它的閃光點在于其支持70多種人類語言!StanfordNLP還包含可以在以下程序步驟中使用的工具︰

—將包含人類語言文本的字符串轉換為句子和單詞列表

—生成單詞的基本形式、詞類和形態特征

—邏輯句法結構依賴分析

 

 

· BERT as a Service: 所有的自然語言處理愛好者都應該听說過谷歌的開創性自然語言處理架構——BERT,但可能還沒有用過。Bert-as-a-service將BERT作為句子編碼器,並通過ZeroMQ將其作為服務器,從而使用戶能夠僅用兩行代碼將句子映射為固定長度的表示形式。

· Google Magenta: Google Magenta提供了處理源數據(主要是音樂和圖像)的實用程序,該數據庫使用這些源數據處理機器學習模型,並最終從這些模型中生成新內容。

· LibROSA: LibROSA是用于音樂和音頻分析的Python語言包。它提供了構建音樂信息檢索系統所必需的構建塊。當用戶在處理諸如語音到文本深度學習等的應用時, LibROSA廣泛應用于在音頻信號預處理程序環節。

5. 旨在進行強化學習的開源工具

強化學習(RL) 是機器學習的新話題,其目標是培養能夠與環境互動並解決復雜任務的智能經紀人,實現機器人、自動駕駛汽車等的實際應用。

強化學習領域的快速發展得益于讓智能經紀人玩一些游戲,如經典的Atari console games、傳統的圍棋游戲,或者讓智能經紀人玩電子游戲,如Dota 2 或 Starcraft 2,所有這些游戲都為智能經紀人提供了具有挑戰性的環境。在這個環境中,新的算法可以安全、可重復的方式測試想法。以下列舉了4個最有利于強化學習的培養環境︰

· Google Research Football: Google Research Football Environment是一個全新的強化學習環境,其中,智能經紀人旨在掌握世界上最流行的足球運動。這種環境能讓用戶更好地訓練強化學習智能經紀人。觀看以下視頻了解更多信息︰

· OpenAI Gym: Gym是開發和比較強化學習算法的工具包,可支持教學經紀人從走路到玩乒乓球或彈球之類的游戲。從以下動圖中可以看到一個正在學習走路的教學經紀人。

 

 

· Unity ML Agents: The Unity Machine Learning Agents Toolkit(ML-Agents)是開源設備的插件,使游戲和模擬游戲能為智能經紀人訓練提供有效環境。通過簡單易用的Python API,用戶可以使用強化學習、模仿學習、神經進化或其他機器學習方法來訓練智能經紀人。

 

 

· Project Malmo: Malmo平台是一個建立在Minecraft之上的復雜人工智能實驗平台,旨在支持人工智能領域的基礎研究,由微軟開發。

當用戶進行數據科學和人工智能相關項目時,開放源碼是一種可行的方法。本文只是介紹了冰山一角,仍有許多工具可用于處理各種各樣的任務,使數據科學家的項目生活更為簡便。數據科學家只需知道何處尋找開放源碼即可。

上一篇︰騰訊發布開源機器學習平台 Angel 3.0 吳恩達關于機器學習職業生涯以及閱讀論文的一些建議(附鏈接)下一篇︰

公眾平台

搜索"raincent"或掃描下面的二維碼

?